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A UNIFIED THEORY OF PLAS:IC BUCKLING

OF COLUMNS AWD PIATES T =

By Elbridge Z. Stowell

SUMMIRY

- On the basgis of modern plasticity conslderations, a unifiled
theory of plastic buckling appliicsble to botlh columns end plates
has been developed. For wmiform compression, the theoory shows
that long columns which bend without apnreciable twisting require
the tangent modulus and that long flanges which twist without N .
appreciable bénding require the secant modnlus. Structures thet _ e T
both bend and twist when they buckle require a modulus which ie i
a combination o? the secent modulus and the tangent modulus, e

INTRODUCTION - .

The calculatlon of the critical compressive stress of columns = -
and of structures mads uwp of plates is en important problem in
ailrcreft design. PFormulas for the critical compressive stress
have been worked out for a mulbiltude of zases of both columns. and
plates, but these formulas ere accurate only if the buckling takes
place within the elastic range of the m: terial. In present—day :
deslgns, most buckling occurs aebove the slasgtic range. The usual
method of handling this problem is to retain sll the formulas . el
derived for the elastic case, but to try to discover an effective, o .
or reduced, modulus of elasticity wihich will give the correct result .
when.inserted into these formulas. Bl : -

Column buckling was the firgt struchural problem to be studled _ ]
in the plastic range. In the latter part of the nineteenth century, B
Engesser proposed use of the tangent modiius as the reduced modulus
for columsg. A% almost the same tims, in the belief that the .
column would be strengthened by unloading on the copvex side, S
Considdre suggested that the effective modulus should lie between
the tangent modulus and Young!s modulus. This concept wag subseo-—
quently refined by Engesser and by von Kérmin (refsrence 1) and
led to what is generally known as the "double modulus."”



(V)

Experiments have shown, however, that the von Karmin double
modulus gives values that are too high for the column strength
(reference 2) and that the correct modulus is nrobably the
tangent modulus. Shanley (reference 3) has sbated the situation
compactly as follows: "If the tangent modulus is used directly
in the Euler formula, the resulting critical loed 1s somswhat
lower than that given by the reduced modulus theory. This
slmpler formula, originally proposed by Engesser, 1s now widely
ugsed by engineers, since 1t gives values that agree very well
with test data." Further careful tests by Shanley (reference 4)
and also by Langley structures research laboratory have shown
that the unloading on one side of the coliumm, postulated by
von Kdxrmén, does not occur at buckliing #nd that the correct modulus
for columse is actually the tangent modr.us. This conclusion also
hag theoretical justifioation (references 3 and 4).

In.the case of local or plate buckling, the reduced modulus
1is appreciably higher than the tangent moedulus, Tesgtes of the
local buckling stress of alrcraft—section coluuns have been made
by Gerard (reference 5), who has suggested the use oi the secant
modulus for this type of ‘buckling. IExtunsive tests in the
Langley structures research laboratory ovn similar alrcreft sec—
tions made and reported over a period oi' geveral years and
sumearized in reference 6 have also shown that the reduced
moduvlus for plates i in the vicinlity of the secant modulus.

In particular, tests of long aluminum-alloy cruciform—section
columns; designed to buckle by twisting wlthout appreclable
bending, have been made in a menner gimilar to that described
for the aircraft—section coluims in reference 6. Tho results
have shown that the reduced modulus for pure twisting is very
close to the mecant wmeodulus,

The present paper constitutes a thooretical lnvestipation
of the buckling of plates beyond the elastic renpe, which includes
colums as a limiting case. Such an investigetion requires a
knowledge of the relations between the stress and strein components
beyond the elastic range. These relaticns have not as yet been
conclusively determined. A recent paper by Handelman and Prager
(reference 7) based on ons pogsible set of stress—strain relutions
led %o results for the buckling.of hingod flanges in sharp disagree~
ment with test results obtalned at the Landley structures research
laborabory, Another set of stress-strain relations is generally
accepted by the Russien Investigators and hes been applied by
Ilyushin (reference 8) to the stress conditions in thin plates.
These results form the foundation of the present naper, which
aggumes that 1n plates as well as in columng, unloading during the
early stages of buckling does mot occur, On this basie, a unifisd’
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theory of plastic buckling applicaeble to both column and local
buckling has been developed. The results are presented in the o
following section. : o R

RESULTS AND CONCLUSIONS

Ilyushin (reference 8) has treeted the stability of plates
stressed above the-elastic limlt with consideration of the three
possible zones that might result from buckling: (1) a purely
elastlic zonse, (2) a zone in which part of the material is in the
elastic and part isg in the plastic state - the "elasto.plastic”
zone, and (3) a purely plastic zome in which all of the plate
is stressed beyond the elastic limit. A1l three zones may exist
simuitaneously if the plate is not entirely in the plastic state
before buckling or if the buckling is allowed to procesed beyond
the initlal stages.

If, however, the plate is wniformly loaded before buckling
go that all parts of it arc inltlally at the sams point in the
plestic rangs and if, in addition, buckling and increase in load
are assumad to progress simultaneously, then the plate may be e
expected to remain in the purely plastic etate in the sarly stages :
of buckling. This second assumption 1s in agreement wlith the
corresponding condition that apparently holds for columms
(reference 4).

Uponn the assumption that the plate remaing in the purely
Plastlic state during buckling, Ilyushin's general relations for
this state have been used to derive the differsntlal equation of
equilibrium of the plate under combined loads. Since critical
stresses ars generally simpler to compute from energy oxpressions
than from & differential equation, the corresponding energy sxpressions
were also found. These derivations are glven in appendix A,
together with applications to compressive buckling of various types
of plates. A comparison with Ilyushin's treatment of the plastic-
buckling problem is given in appendix B.

The results of most interest in the present analysis are glven
in the following teble as values of a quantity 1, the number by
which the critical stress computed for the elasbic case mmst bo multl-
plied to give the coritical stress for the plastlic casge:

v
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Curve
Structure 7 (See fig. 1)
Esec
Long flangs, one A
unlogded edge, E
glmply supported
Long flangs, one E E
unloaded. edge SZO 0,428 + 0,572 % i e B
clamped, _ Esec
Long plates, both gec
unloaded edges C
sluply supported B
Long plate, both gesc
unloaded edges D
clamped E
Short plate B -
loaded as a 1 Zgec 3 “tan
= o+ I
g T L E
column (ﬁ <<Ib
b Y, :
Sguare plate ) T
loaded as T
vaded ag a 0.11k éec + 0.88¢ ten 1)
'L .
column { =~ = 1
e (1 +)
' E
1 tan
L - 1 —a ¢
ong qolumn (P >> ) 7
i

These values of g

stress was 46 ksi,

are plotted ag curves ‘A to G in figure 1
for extruded 24S-T aluminum alloy for which the compresaive yleld

Similar curves for 1

could readily be

prepared for any other material having a known stress—strain

relationship.
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The velues of 71 g&iven in the table were obteined by dividing
the critical stress of the structure in the plastic region by the
critical stress that would be obtained on the assumption of perfoct
elasticity. Since Poisson's ratio has been taken as one-half in both
computations, errors from this cause will ordinarily be present in
both critical stresses. Mosgt of thess errors will be eliminated,
howover, in the process of division to cobtain n; and, oonsequently;
the values of 1 glven are belisved to' bz nearly correct.

When plate-buckling stresses in the plastic rangs are to be com-
puted, the experimental valus of Poisson's ratio' that applies as
closely as possible to the stressed mate iel, together with the appro-
priate value of 5 from this paper, should be used in the plate-
buckling formula. _ '

The highest value of 7 which is 3122 can be realized only if
there is negligible longltudinal bending (as with a long hinged flange

E
which buckles by twisting). The lowest value of 7 which is ;an

occurs whsn the longitudinal bending predominates over other itypes of
distortion (as with a long columm under Euler buckling). The theory
implies that & change in the stress-strain curve caused by pre-
stressing of the material would alter the value of 7 Iin the first
case but not in the second, if the buckling stress is higher than the
highest stress reached during the operatiqn of pre-~sitressing. IT, cn
the other hand, the buckling stress is lower than the highest stress
reached during the operaticn of pre-stressing, then 17 = 1 for each
casge. :

‘Natlional Advisory Commitbtee for Aeronautics
Langley Memorial Aeronauwtical ILaboratory
Langley Fleld, Va., July 29, 1947
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AFPPENDIX A

THEORETICAL DERIVATIONS

Dofinitiong.— The intensities of stress asnd strain are defined
in reference 8, respectively, as

oy = \/;xe + cya — 030 + 372 (1)
2 2 2 i ' |
0y = —=\ .+ e =+ ¢ 6, + (2)
i \/3\//x 2 xEy N _

where
Oy stregs in the z-direction
€x gtrain in the x-direction
cy strese 1in the y-dirsction
€y strain in the y-direction
T shear stress . .
» ghear strain S

Accordiug to the fundamental hypothesis of the theory of plasticity,
the lutenaiuvy of stress o4 de a uniquely defined, single—valued

function of the intensity of straln ey for any glven material
1f o4 incrosyss in magnitude (loading condltion). If o4
decroases (unloading oondition), the relation between oy and e,

becomes linear sg in a purely elastio casme.

In the equations of definition (1) and (2), the material ia taken

’

to bo incomprossidle ond Polssonl's ratic = %. The stross—atrain
rélations compatible with the equations of definition (1) and (2) are:
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1
°x -7 5
Gx = =
Esec ESGG
1
Uy - ng Sy
€ = = §
7T TR, B ( : (3)
y = 3T
Egec
g1
ei = .
Esec

These relations lmply isotropy of the material,

Variatlons of strain and stress.- When buckling occurs, let
€xy €, and 7 vary slightly from thelr values before buckling,

The variations d¢,, Bey,, and B8y will arise partly from the

varisations of middle-surface strains and partly from strains due to
bending; thus, :

e €

x 1" ZX3,

€, - ZX > (h)

€
° 5

Sy = D¢ - 2
7 3 7 %Xy

-

in which €3 and leg are'middle-éurface strain varlations and €3
is the middle-surface shear-strain variation, Xy and X, are the
changes in curvature and X3 1s the change in twist, and z 1is the
distance out from the middle surface of the plate.
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The corresponding variations 83,, &5 and &t in S,

y’

Sy, and T mwst be computed. From equations (3),
S = Bgoe &
therefore .
854 5 Byp B g L
x T “gec Ex + -GJ.C a—j':
do
- E o (o1 %% 3o (5)

SE - ———
gsec x 1
o4 \ei dei
Now the variatlion of the work of the inbernal forces i1s

gy Bey = 0y Sey + Oy Bey + TBy

so that

e e Oy Be, + O Be, + T By

- .v.-" . 651 y y
SRS o

i Ogel + Oyey + ATe, — erJ'Cxl + T X, 21)(3) ©

Oy

Substitution of this valus of Bei in equation (5) gives

Bsx.-Esecae' -cx (AL el+ore +2‘To.=.3
Uiei

- z(crxxl + gy + 27)%)]
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Let the coordinate of the surface for which 8ey = O (the neutral

The expression for z, 1s obtained by getting

- surface) be 2z = z o

0.
8e4 = O in equation (6);

. = Oy€7 +-a:,,€2 + 2"'._€g 7
o .
OgXl + °yX2 + 2rx3 _

By introductlon of 'ghis coordinate into the expression £or SSx and

1 g4
by recognition of -e-; as Ese and o as Etan

C ei

85; = Egec (el - ZXTL)

. '
o + criei<EE’e° - E-ban) (\o‘xxl + OS%, + 2TX3) (z — zo) (8) |

' In a similer way it may be shown that

85, = Bggo Q—:Q - zxe)

ey
+ — (Esec - Etan) (crxxl * OXy + 21-x3>(z - 25) (9)

and

3o‘iei

+ =L (Esec - Eta_n) (Uxxl . Oy Xp + 2-rx3)(z ~ 25} (10)
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Variations of forcegi and momonts.— For the variations of the

impressed forces Ty,

and.Mxy

Ty, ?.nd Txy
Wb
- 2
% = hScrxdz
d s,
b
8T 28 dz
y© | n°%°
Vo2
y B
8‘1“= 25 dz
xy " | 87
'y 2 >
_‘f_t_l_
2
SMX=/h80'xzd.z
vTg
h
&M 25 d
=
- ‘h cyz Z
L2
2 h
2
&M =/ 8T 2 4z
Xy h
vVoE
-

where h 1s the thicknesa of the plabe.

and the moments M., | My,

(11)

":—-;__"j ...-_....__'-_-_ﬁ._. o "y

[ .

s
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From equations (3), (8}, and (9),

11

ru.l}.
L2 1
M, = —~ 88 = BS
My 3¢,-E<x+2 5‘_zd.z
— .I ‘ E - h #
:Ll!'-:lE € +i-s ' 2-zrlz:—E X, 4+ & X 22c‘!.z
_3.-560_1 2 2‘_2 sec\ 1 o o _QZ.
i "2 | 2
1 h
c 1 b
..+ JC+2- b 7
: oo ~ Eion OxXp + O'y)(e + 27)(3) ‘ — )dz
L S
E n3 €x * 3 % E
_ 4 Tgec 1 tan
=3 " —>¢_L+-2-x2+ —-l-—E szxl
948y gec
+cry><2+2'rx3>]
0.-2 '
= Dt 1 -3{ %) {1 _tan
L\o; B !
sec
1 095 Eion Ox T 5 :
- I R - x2—3--—— lv—:-'a-r-}'X (12)
2 2 5,2 sec a £sec
where
3
Eoee B

D!

O
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Similarly,
L
s, =2 2% (es 1+ Lss )z an
¥y 3/ h\ Uy 2 /77
1173
. o“
=Dt/ 11 _.%sz) ] . .ten Xé 2 1 _.3?53¥ 1 . uen X,
\g i .
1 }i'se 20,2 Egec
oT B
_.23. L 1_Etan X, (13)
oy sec
h
oM 2 BT 2z dz
xy h
Vo3

Q.

2 Io}
LA O PR o 3%’& vl tan
2 012

(1k)

In these expreassions,. the integrationg of 8S,., GSy, and 8T in

the plastic region heve been taken over the ontire thickness of the
plate, with the implication that no part of the plate is being
wmloaded, . . . . . .

Equation of equilibrivm,— If w(x,y) is the bending deflectlon
of the plate at buckling, and 1f no external moments are applied to

the plate, then the equation of equllibrium of an element of the
plate may be written

8225:]{) aiianadw) aegaMy) h(o egw+c aew o aew) (15)_ 9
X v v

yaye dy

in which the lmpressed forces cyh, cyh, and 7Th are consldered

as given (o, and o, are positive for compression), In terms of

¥
W, Tthe changes in curvatures are
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Xl = ~ (16@?

and
_ % -

X, = o (16b)

The change in tuist is
ng
X = (16c)
3 x oy

When the values of 8H,, BMy, =and &M, 1n equations (12}, (13),

and (1), respectively, are diTleI'entl"bGd. as required by equation (15)
ond substituted in that equation, the gonerel differential equation
of equilibrium for a nla‘be in the plestic stote is obtalned es follows:

1 - > ' ta.n V
L’ Esec a3 dy
00, + 27 4
+ 201 — 3 Xy 1 - tan QW
. b cie E oo/ | 07 w2 oy 2 Egec

1.3 _‘fé:)a _]_El»an- -@EE:,-.-E- o, aaw E)Ew . or Py
B ) | T T\ T T

(17

In the elastic ronge, equation (17) reduces to the usual form

\_/).pw - % aew a_ac_f_ . BT %y
o.'r2 ox oy
vhere
En3

D = ——
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Energy integralg.— Equation (17) is the Eulsr eguetion that
results from e minimization of the integral

[ o () ol e [0 B
LN

v

32 2P xay 3 |\axoy/ mE o0
w3y | aawi‘ Doy | 0% /aw\2

~c, S 4o (XY L ""(’a—
3x dy Oye ? \dy° J 2 _?i X/ .

or v v . Oy /v -

+a;§£-§§+-&:(§§) dx dy (18)

which represents the difference botween the strain energy in tﬁe
plate and the work. done on the plate by -the external forces. The
coefficlents in this integral are: S

In the plastic region - In the elastic region
2 .
0. E
C, =1-% -&f><~tan C; =1
o 1 Bsec
A = ,
. X tan
02’:3;—?(1-3! ) 02=0
1 gec
- cbc + 27 E -
0. =-1 3 x7 1 . tan C. = 1
3 4 o 2 E 3
o 1 gea
g T E
G, = e ._._P.E-P. = 0
k=3 =5 E %y
1 - geq
2
[ b
o5=1-%<—7i) 1~ 20 C. =1
o1 sec 2




IT there 18 a restralnt of magnitude ¢ elong ono longltudinel edge of the plate, the gtrain energy

-]
in this restraint 1tself is taken to be :E
=
2 -
' i

D (%) ix (19) o

e /y=y
o =
\
A

if y, is the edge coordinate. (See refevence 9 for form of expressfon,) In expression (19), the

gtiffnses D' 1s assumed to be the same as thet in equation (12). If restraints are present along
two edpos, there will he two terms gimilar to expresslon (19) These terms may be added to
integral (18) as additional strain energy. , N

Critical atress in plagtic region.— If the itegral (18), eupplemented if necemsary by addl-

ticnel terme of the form of expression (19), is set equal to zero and the regulting equation solved
for o;, the critical-gtress 111t.enaity in the plastic reglon {o

[y sl s o] -

(ci)le!];i"{‘ N o
[lEe +%%%w§<§%ﬂw

in which the values of the C's in 'the ‘plagtlic range are used., ' Thig expression for the critical-
gtreas Intenslty moy be mjnimizecl as with the corresponding elaa‘tic cage, _

(20)

&t



If the velues of the C's 1in the elastic region are used in formila {20), the

critical—-stress Intensalty in the elasbic region (O’i)el 1a as follows:

SIS a5 e ﬂm

(e)ar = B (21)

° /o T Wow . yow
= (¥ o W £ lax
]/ “1-(81)+ Uiaxay+f’iay) v
1 L . R . —
E:ggmeqion for n.—-A Qmmtity 1 is dafined asg
- - ) - ("1)
(Ui)el

This rmirntity is a dlrect meesure of the effectiveness ¢f plosticity in ‘v'aiucing the
critical strees of a structure, and its computation in terms of the constants of the
gtress—gtrain curve represem;s the solutlon of the problem of plestic buckling.

Agglicatj,gg to plates compressed jn the x-directiocnm.- The theory will now be’

applied to flat, rectengular plates uniformly compressed in the x~directlon. Values
of n will be com;mted for the following cases:

I. Long plates with one free edge (flanges), the other edge being elther hinged
or clampad

II. Long plates with both ed.ges olther hinged or clamped

ITI. Platepg with two free edgss (colums)

(22)

ot
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When op =T = 0, oy =0  and the plagticity coefficlents reduce to

A
1 3 "tan
C; syt =
TR b B,
Cy=Cy=0
and
03 = C5 =1
The differential egquation of eguilibrium, equation (17), then becomes
o ahw ' 3w BW __hax 3 (23)
™ aye D P

and. the corregponding’ energy expreasion (20) for the crihical stress in the pla.at:lo Tangs
bacomes - . -
o RN Y- B 2 2 ' "o 2
fc a2 aev , P e, (P dxdﬂ% (_aﬁ) -
ox N ¥/ | OF /y=3,|

o) SR .
PIL h fb/ (%)2 ax iy

(24)

Case I: Elagtically restreined flengs

It ¥ = 0 1ig the elastically rogtrained edge of the flenge and y = b is the free
edgo, s deflection murface known to bhe good in the elastic range and presumably satis—
factory also beyond this range is (referemce 9)

GGGT "ON NI VOVN

LT



where

end € 1s the magnitude of ths elagtic restraint.

= 9.8
= —9.778

Substitution of this expression for w

in equation (2h) glves ﬁ_ -
' 2 ' o€ ¢
1 £ _1 £ _ 1 5 k 1tb E
§+2@2 2°3>+h 6 §°7+2(5_13\2 (’5 et 7Q
(o) . = 2. %/ HED' _
ol 2 1, 98¢, %2 v2h
3 2a3 11-&32
whero
c, = 0.2369k Sg = 0.56712
¢y = 0.79546 og = 0.1756k
03 = 0.89395 Gy = 0.19736
c), = 0.04286 cg = -2.3168
= 4.0982

gt

cCCT "ON NI VOVN



In order to find the minimm value of (?&)Pl

a(c'x)“l
—=2 - °
b
3(5,“
wvhich glves oe
S{1+ 5)
(rt'b)e_ 2 )
A c. € 2
V(L 2o, af
| (5* B )Cl
The minimm value of (oy) ., 1s therefore
pl - 2
' ) 2 " 0gé C.6 €
TR WL ST Py R TR
§+'E(GE-_EG3)'+T(06—5(:7‘)-‘-2\/01_- 2(14- a ‘B"'!- A + 8 aDl
(ol = & i P - .
Pl - '
" 1458, %% vh
3 2a3 2

For the elastic case, the seme expression is obtained from egquation (21) with C, =1 and

D' replaced by D. From equation (28, therefore,

*ON NI VOVA
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: 2 C-€ C. € G &
1,¢ e, -1 € (o - L AN O SR ENN
. 24-2(02 963)+1; (06 207)+2\/Cl\£(1+ h>%+ h+

8
q = —— {25)
B L.E 1 05(:' ClE Gl|.€2
2+EQ2—503)+—( ——c)+2\/ (l -+T+T
{a) If the edge y=0 1g hin.ged:_, € =0 'and, from equation’ (25),
B
sec
= (26)

-

‘This vali®, as e fuaction of stréss, is plotted as cirve A for ohS<T alumimm alloy 1n.
Pigure 1, The Individual points represent the NACA tests of the buckling of crucifom-—
section coliuams for which the conditlon € =0 1s fulfilled.

- (b)Ifthe edge y =0 is clamped, € = ® and, from equation (25),

4 \ c
1 1 RS
et sy S5

B n
n = 30
E 1 4 1 . ° “feucs
b (cé —-2-.077':-‘- 2 L
or
E
N = —=210.330 + 0.670 ; (27)
B

Qg
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This valus of 7 1s plotted as curve B for '.Elbs'-‘]f_"'aiuhinm alloy
in figure 1.

Case II: Flate eias’oica.lly restfa’inpd aiong two uirﬂ:oad.ed edges

If y=1% % are the immoveble unloaded sdges which are

elastically restrained agailnst raotation by restraints of magnitude €,a
satisfactory &sfloction surfoce is known to be (reference 10) _

2 : ¢
2 V42 + £ Yoos 2L |cos EX
p2 b 2/ n | A

Substitution of this expression for w in equation (24) gives

o[ 8 < 0 (2 + 0] 2

1€
2

=

il
/‘rq\

!

[

where .
0.0237¢2 + 0,297¢ + % .
.fl( e) = : : - ... . -
' 0.00461¢® + 0,0947¢ + = -
>
and o
0.011ke® + 0,18gke + 1 =

0.00461€2 + 0.0947¢ + %

In order to. find the minimum value of (o’x)
a(cx)pl )

<

B -\8

pl e

0.

whilch glves
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The nminimum valuelof (UX)pl is therefore

Dy = 215 T < 200 22

For the elastlc case, the saﬁe expresslon is obtained fram
equation 221) with €, =1 and D! replaced by D, From
equation (22), therefGre,

b 2 D+ 00
B ex/fl(e) + fg(e)

() If tho edges y = *
fol€) = 2, and, from equation (28),

. B . ' ‘.\
. . E
) Esec 1 +y/01 _ Esec L, 111 . 3 _tan (29)
- = - \ |
2 - 2 BT L Eo.

n = (28)

ol kep

are hinged, € = O, fl(e) =1,

n % F >

This velue of 7 1is plotted as curve C for 24S-I aluminum alloy in
Tigure 1.

(b) If the edges y = ¥ g ave clamped, e = =, £i(¢) = 5.15,
fe( €) = 2,46, and, from equation (28),
Egoo 2-46 + u.523/cl
E 6.98

n::

E — _E, _
= 222 {0,353 + 0.6&7\/1 , 2 (30)
E k 1*Esec.

This valuse of 7 1is plotted as curve D for 24S-T aluminum alloy
in figure 1.
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Case IIT: Plastic buckling of colummsg.
For the discussion of the plastic 'buckling of columns, it 1s

convenlent to revert to the differential equation (23). The plate,
when loaded as a column, has two Pree edgos describsd by the condi-

tions
19 W\

3 ay2 z P Jptl
_ dw . 3 BZW \\) Y
I3 23 By/y_.;.b

A soiu'i:ion of equation (23) which idan't;:tcally gatisfies the .first’
condlition 1s

=|g cos —B-'cosh X ., p cosh & cos B | cos X
2 b 2 b 1

where -

2 -

o = \,\/_+ /k+ )\1-0)

o B
=2 [-E b -
ﬁ—n\/l \/ z+\/k+ z) (l Cl)

, 2

Dt

O'x) =kZ
2. .

2 \
p=o - L(m)
2\1? y
2.

i,
1,3 tan
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In order thet this solutlon also satlisfy the second condltion
at the free edges, it 1s required. tha.t

Etanhd' : ',ﬁbetan—g
0“1 P-( +B?‘P q-‘-b.-') "—5-2"0 (31)
- ' 2

vhich 1s the buckling criterion for the plate when loaded as a

column. Iet
k+(-b- <1.-c> ( 1—§> (32)

where 52 is & quantity to be determined for three ind.ivid.ual cases.
By use of equation (32) ;

2 .
a?:(—’z-@- <1+ l—§2>

and the buckling criterion given in equation (31) becomes

B
tanh ' tan 5
maq_z Py + Bepe —-—é—-—- = 0
2 2
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: : tenh &
2 2 2 2
+G;—§)éz-\’l-§ -E

o6 FTghe o

From equation (32), k = (%) ( -t )‘ end thus the critilcal
gtress in the plastic rangs is

. .2,
P ()
. ,xPl 312
E(ﬂ)
where
o—\/ﬁ.

' The corresponding critical stress in the elastic range is

rteE(l - £2)
Gy

The reduction factor 1 1s obtalned from formula (22) as

(‘E" §2> gec __‘bEz_]._

Gx)el -

(34)

(2) In order to investigate the case of short columns, 1ot &
approach zero. Then, by definition of B,

B—>0
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-and

: tan.g o
—_— 3]

In addition,

£? 4 (%;—52)( -\/:-—52)—90-

The buckling criterion given in equation (33) therafore reduces to

N tanh—
§+L—EEQ+\/1—§ = 0

&

2

ag £—>0, In order

R4 ol

The expression in the brackets approaches
to satisfy the buckling criterion, therefore,

tanh &
; 2_90
e

2

vhich can be reslized only if o 1is large; that is, if b 15 large.
For short columns, therefore, L
Y

and, from oquation (34),

33; tea (35)

This valus of 7 1s plotted es curve E for 248-T aluminum alloy
in figure 1.
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(b) For a square plate, %: L, a= n:\/l + N }l - 2

B =1ix \/l - 1 - .2, eand the buckling criterion given in
equation (33) becomes

| PN O )
g+(rg)(_.+r— e -

gl = =foier).

which is satisfled by &° = 0,15375. From equation (3u),

E - E '
n = 0.11k s;" + 0.886 _3_;_13 (36)

This value of % 1is plotted as curve T for 24S-T aluminum alloy
In figure 1.

(c) For long columns, o end B become so small that

tenh & tan B
2_:3 Ee.asl
. 2.

e

and the buckling criterion of equation (33) reduces to N
2 (1 _ 2\ _e_l—a 1A, e .
§.+()+ §)<l+\f1 §>L§ 4-(){‘ g/,( 1 g) 0

vhich is setisfied by g = -:-Ll; From equation (34},

B
tan
. n= = : (37

This value of 71 agrees with the experirental results of

references 2 and 4 and is plotted as curve G for 24S-T aluminum
alloy in figure 1.
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APPENIIX B
COMPARISON WITH ILYUSHIN'S STABILITY CALCULATIONS

The basic difference between Ilyushin's solution of the plastic-
buckling problem and thet given in this paper is that Ilyushin con-
siders the plate to unload on one fece as it-buckles. The unloeding
process regults in the creation of an elasto-plastic zone in the
plate, and different equations from those that apply when the plate
remaing plastic during the buckling process are required foir this
Z0NRa . . '

The differentlal equation foi the buckling of a rectangular
plate when buckling is accompanied by unloading is given by Ilyushin
a8 equation (3.43) of reference 8. For simple comp.ession in the
x-direction this equation is of the same form a&s equation (23) of
the present paper, but with the followlng different constants:

D is used inegtead of D' and

K =1 - 2t3(3 - 2t)

B ‘

is used instead of Ezﬁn « In the formula for k, from equation (3.1)
sec

of reference 8,

1-/1 -
§ =

A
end, from emation (1.22) of reference 8,

B
.
B

When the values of § and A dre inseited into the expression
for k :
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z
tan
Btan + -~y —5— tan
k = - 5-3 ——
E - Btan E /£ -

1--5

E
t8n | o that the
58C

will result in appreciably higher va.;Lues

Computation shows that k 1s always larger then

E
use of k 1in place of tan

Egec .
of 17 than those given in the present paper. Since Ilyushin uses
the elastlc value D there is no possidbillity of the solution
yielding a secant modui 3. Curves A to G in figure 1, if com-
puted from Ilyushin's equation (3.43), would start with a horizontal
line at unlty for curve & (Young's modulus) and end with curve G
expressing the Kdrmén double modulus which is appreciably higher then
the tangent modulus of this peper. If D' were substituted.for D
in Tlyushin's equation (3.43), curve’ A would then represent the
gecant modulus as it does in the present paper, but cuirve G would
8ti1l remein the Kdrmén dottble modulus. Therefore s When the unloeding
of the plate during the buckling process is considered, results are
obtained which are not confirmed by expeiiment.
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Figure |.— Computed curves showing variation of 7 with siress for

various structures of 24S-T dluminum alloy in compression., (Curves
A to G are drawn for a material with o yield stress of 46 ksi. The
scatter band enclosing curve A shows the limits of variation of specimen
properties from this value.)



